Análise paramétrica em algoritmo de inteligência de enxame utilizando funções Benchmark

dc.contributor.advisor-co1VIDAL, Juan Ferreirapt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9977260139812745pt_BR
dc.contributor.advisor1FERREIRA JUNIOR, José Jailton Henrique
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9031636126268760pt_BR
dc.creatorLIMA, Weverson Celio Silva de
dc.creator.Latteshttp://lattes.cnpq.br/7145128230798977pt_BR
dc.date.accessioned2023-06-07T13:42:34Z
dc.date.available2023-06-07T13:42:34Z
dc.date.issued2022-10-28
dc.description.abstractOptimization problems are present in applications in the scientific, financial, industrial and management areas, and in recent years several methodologies have emerged that aim to obtain their solution. One of these techniques is known as Swarm Intelligence (SI), based on the behavior of relatively simple beings, but who manage to solve complex problems when they are placed in a collective. In the literature, several SI algorithms were found, but there was a lack of in-depth studies on the behavior of each of its parameters. Therefore, this work presents a parametric analysis of two widely used SI algorithms, namely Particle swarm optimization (PSO) and Firefly Algorithm (FA). For this, a benchmarking study was carried out using benchmark functions in three search intervals of different sizes, in order to evaluate metrics such as accuracy, precision and average processing time. For this purpose, respectively, 315 and 207 scenarios were developed for PSO and FA. Furthermore, to compare the SI in relation to the traditional heuristic, 171 scenarios were developed for the Random Walk (RW) algorithm. With results, sets of parameters were obtained with accuracy and precision around 100% in the best scenarios of the SI algorithms, demonstrating the importance of a good parameterization for an optimal performance of the method.en
dc.identifier.citationLIMA, Weverson Celio Silva de. Análise paramétrica em algoritmo de inteligência de enxame utilizando funções Benchmark. 2022. Trabalho de Curso (Bacharelado em Engenharia de Computação) – Faculdade de Engenharia da Computação, Campus Universitário de Castanhal, Universidade Federal do Pará, Castanhal, 2022. Disponível em: https://bdm.ufpa.br:8443/jspui/handle/prefix/5770. Acesso em:.pt_BR
dc.identifier.urihttps://bdm.ufpa.br/handle/prefix/5770
dc.rightsAcesso Abertopt_BR
dc.source.uriDisponível via internet no e-mail: bibufpacastanhal@gmail.compt_BR
dc.subjectOtimizaçãopt_BR
dc.subjectAlgoritmospt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRApt_BR
dc.titleAnálise paramétrica em algoritmo de inteligência de enxame utilizando funções Benchmarkpt_BR
dc.typeTrabalho de Curso - Graduação - Artigopt_BR

Arquivo(s)

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
TCC_AnaliseParametricaAlgoritmo.pdf
Tamanho:
1.29 MB
Formato:
Adobe Portable Document Format
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.84 KB
Formato:
Item-specific license agreed upon to submission
Descrição: