Navegando por Assunto "GPU"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Artigo Acesso aberto (Open Access) Predição de desempenho de aplicações CUDA utilizando aprendizado de máquina e características de pré-execução(2024-07-11) SIQUEIRA, Luan Ribeiro; GONZÁLEZ, Marcos Tulio Amaris; http://lattes.cnpq.br/9970287865377659Com a evolução das unidades de processamento gráfico (GPU), as aplicações de computação paralela estão se tornando cada vez mais complexas. Predizer o desempenho dessas aplicações ajuda desenvolvedores a otimizar seus algoritmos escalonadores na distribuição de seus trabalhos. Neste trabalho, foram desenvolvidos e avaliados modelos de aprendizado de maquina para predizer o desempenho de aplicações CUDA utilizando características de pre-execução. Foram comparados os modelos Ridge Regression, Random Forest e Decision Tree em nove aplicações CUDA, utilizando a métrica MAPE. Os resultados mostram que o Decision Tree obteve os menores valores de MAPE, enquanto o Random Forest apresentou um desempenho consistente. Já o Ridge Regression teve desempenho variável devido a sua limitação em lidar com multicolinearidade. O estudo enfatiza a importância considerar as características específicas da aplicação e da GPU ao fazer predições de desempenho