Navegando por Assunto "Aprendizado federado"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Aprendizado federado baseado em múltiplas árvores de decisão para aplicações iot com computação de borda cooperativa(2024) BARBOSA, Lucas Nobre; RIKER, André Figueira; http://lattes.cnpq.br/2949449810540513A Internet das Coisas (IoT) tem dependido de nós de computação em borda para descentralizar a computação e trazer mais poder de processamento próximo aos dispositivos IoT, como sensores e atuadores. Os nós de compu tação de borda da IoT têm mais poder de processamento de dados e recursos energéticos do que os dispositivos IoT regulares que visam monitorar e atuar no ambiente. No entanto, em geral, os nós de computação de borda não são pro jetados para treinamento intensivo de Aprendizado de Máquina (ML) ou para hospedar grandes modelos de ML. Nas arquiteturas de rede IoT atuais, existem múltiplos nós de computação de borda estrategicamente localizados perto de um grande número de dispositivos, onde cada um dos nós de computação de borda tem acesso a parte dos dados produzidos por toda a rede IoT. Neste cená rio, cada nó de computação de borda executa modelos de ML leves em seu con junto de dados local. Neste artigo, propomos uma solução, chamada FEderated Decison Tree (FEDT), Árvore de Decisão Federada, que agrega o aprendizado produzido por múltiplas árvores de decisão de nós de borda cooperativos, se guindo os princípios de aprendizado federado. Apresentamos quatro estratégias de aprendizado federado diferentes e demonstramos que o FEDT pode alcançar cerca de 80% de um modelo de ML centralizado em termos de correlação de Pearson.Trabalho de Curso - Graduação - Artigo Acesso aberto (Open Access) SCOPE-FL: seleção de clientes por ordem de entropia no aprendizado federado(2025-09-09) SILVA, Isaque Oliveira; SILVA, Carlos Eduardo Vitelli da; MEDEIROS, Iago Lins de; http://lattes.cnpq.br/7024608706674939; https://orcid.org/0000-0003-4758-0519A crescente utilização de dispositivos conectados exige novos métodos para lidar com a quantidade e privacidade dos dados compartilhados. Federated Learning (FL) surge como uma solução, permitindo o treinamento de modelos sem compartilhar dados diretamente, preservando a privacidade dos clientes. No entanto, nem todos os clientes são igualmente úteis para o aprimoramento de modelos globais, tornando necessária uma seleção eficiente de clientes. O SCOPE-FL propõe um mecanismo dinâmico de seleção de clientes, atribuindo pesos à entropia dos dados e ao tamanho do dataset, para garantir uma contribuição mais eficiente para o modelo global. Isso é feito calculando uma pontuação de relevância para cada cliente, com base nesses fatores, e ajustando os pesos atribuídos a cada cliente. O SCOPE-FL usa o método FedAvg para agregar modelos locais, priorizando clientes com dados mais relevantes. Após simulações utilizando o dataset MNIST, o SCOPE-FL superou métodos tradicionais, mostrando uma taxa de acurácia superior a 60% após 12 rodadas, alcançando até 80% em 22 rodadas.