Faculdade de Engenharia Elétrica - FEE/CAMTUC
URI Permanente para esta coleção
Campus de Tucuruí /
Bibliotecária: Mayara de Kassia Pinheiro Menezes
Whatsapp: (94) 98199-9226
E-mail: bibliocamtuc@ufpa.br
Facebook: https://www.facebook.com/bibcamtuc/
Instagram: https://www.instagram.com/bcamtuc/
Navegar
Navegando Faculdade de Engenharia Elétrica - FEE/CAMTUC por CNPq "CNPQ::ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Modelos de previsão de vazão afluente da UHE-Tucuruí: uma abordagem com redes neurais LSTM e CNN(2023-12-06) MEDEIROS, Kevin Martins; TEIXEIRA, Raphael Barros; http://lattes.cnpq.br/4902824086591521; https://orcid.org/0000-0003-2993-802XEste trabalho apresenta um estudo abrangente sobre a previsão de vazão afluentes da Usina Hidrelétrica de Tucuruí, situada na bacia do Tocantins-Araguaia. A pesquisa abrange cinco cenários distintos, variando a arquitetura dos modelos de previsão, incorporando Redes Neurais Recorrentes de Longa Memória de Curto Prazo (LSTM) e Redes Neurais Convolucionais (CNN). A implementação, conduzida em Python com o auxílio de bibliotecas como Pandas e NumPy, faz uso de um conjunto de dados históricos de vazões afluentes fornecidos pelo Operador Nacional do Sistema Elétrico (ONS) das Usinas de Tucuruí, Estreito e Lajeado. Os resultados obtidos foram avaliados minuciosamente por meio de análises aprofundadas, métricas de regressão e representações gráficas, demonstrando a eficácia dessas abordagens na previsão da vazão afluente diária da UHE-Tucuruí em horizontes temporais que variam de 1 a 7 dias. Além das contribuições metodológicas, este estudo proporciona insights cruciais que têm o potencial de elevar a precisão da previsão hidrológica, um campo de extrema importância na gestão de recursos hídricos e energia.Trabalho de Curso - Graduação - Monografia Acesso aberto (Open Access) Previsão de vazão afluente da UHE-Tucuruí por redes neurais recorrentes LSTM(2022-07-11) SANTOS, Ayla Lis Lopes; TEIXEIRA, Raphael Barros; http://lattes.cnpq.br/4902824086591521A previsão de vazões afluentes aos reservatórios das usinas hidrelétricas é de grande importância na otimização do planejamento de operação, e tem como objetivo apresentar um cenário futuro que poderá impactar no processo de geração de energia através do aumento ou diminuição de vazão afluente prevista. Neste processo de previsão são geralmente utilizados modelos matemáticos computacionais baseados em redes neurais. Neste trabalho apresentamos um estudo da aplicação de Redes Neurais Recorrentes Long Short-Term Memory (LSTM) no problema de previsão de vazão afluente diária da Usina Hidrelétrica (UHE) de Tucuruí localizada na Bacia Hidrográfica Tocantins Araguaia, no horizonte de 1 até 7 dias à frente, considerando as séries históricas de dados medidos pela Agência Nacional de Águas (ANA) de UHE’s localizadas à montante do seu reservatório. Os resultados obtidos através do treinamento do modelo, mostraram viabilidade de sua aplicação para previsão de vazão afluente diária por meio dos testes e análises realizadas ao longo do trabalho, onde o ajuste de cada cenário apresentado ficou em aproximadamente 91% ao ser realizada a comparação entre os valores computacionais, com a porção dos dados originais do conjunto separados para a validação.