Logo do repositório
  • Português do Brasil
  • English
  • Español
  • Français
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
Logo do repositório
  • Tudo na BDM
  • Documentos
  • Contato
  • Português do Brasil
  • English
  • Español
  • Français
  • Entrar
    Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "QUEIROZ, Fellipe Augusto Santana"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Trabalho de Curso - Graduação - MonografiaAcesso aberto (Open Access)
    Predição de consumo energético de aplicações OpenMP em máquinas multi-core usando técnicas de regressão de aprendizado de máquina
    (2023-12-13) QUEIROZ, Fellipe Augusto Santana; GONZÁLEZ, Marcos Tulio Amaris; http://lattes.cnpq.br/9970287865377659
    O campo de pesquisa em Green Computing, que visa tornar a computação mais sustentável e ecologicamente correta, tem sido impulsionado pela crescente integração de tecnologias de processamento e armazenamento de dados em larga escala. A complexidade crescente e o volume massivo de dados provenientes de diversas fontes têm desafiado as infraestruturas tradicionais, levando à exploração de plataformas Multi-core. Apesar do significativo aumento no desempenho e na eficiência energética com a utilização das máquinas multi-core, ainda assim, devido à crescente demanda de consumo, os gastos energéticos atingiu valores elevados. Neste estudo, descobrimos que modelos de regressão polinomial são mais eficazes que os lineares para prever o consumo de energia, especialmente em dados complexos. Além de que, a CPU é o maior consumidor de energia, sugerindo a necessidade de otimização ou uso de GPUs. Não encontramos uma correlação direta entre o tempo de execução e o consumo de energia, sugerindo que aplicações demoradas podem ter gastos menores, devido a otimizações. A análises de agrupamento dos benchmarks indicaram padrões de consumo semelhantes, úteis para otimizações futuras. A regressão polinomial de grau 3 foi eficiente em muitos casos, porém a eficácia varia com a quantidade de dados, e modelos personalizados de dados se mostraram mais eficientes do que abordagens unificadas.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão
Brasão UFPA