Navegando por Autor "LOPES, Danilo de Sousa"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Artigo Acesso aberto (Open Access) Sistemas de interface cérebro-máquina: classificação de imagética motora via geometria de Riemann com otimização bayesiana(2023-12-19) LOPES, Danilo de Sousa; SILVA, Cleison Daniel; http://lattes.cnpq.br/1445401605385329; https://orcid.org/0000-0001-8280-2928Neste estudo, é apresentada uma nova metodologia para aprimorar o desempenho de sistemas de Interface Cérebro-Máquina baseados em Imagética Motora. Utilizaram-se informações de diferentes regiões do espectro dos sinais de eletroencefalografia, representadas como matrizes de covariância ponderadas pelo janelamento de sub-bandas no espaço Riemanniano. Para classificar essas matrizes, foi empregado o algoritmo Distância Mínima à Média de Riemann. Os hiperparâmetro que influenciam a faixa de frequência de interesse, comprimento da sub-banda e taxa de sobreposição, são refinados por meio da Otimização Bayesiana, que proporcionou novos graus de liberdade de ajustes individuais. Para a fusão da classificação das matrizes, foi adotado o algoritmo Light Gradient Boosting Machine, baseado no m´método Ensemble, que assegura uma melhor precisão final do modelo e alto desempenho na classificação da Imagética Motora. Os experimentos foram conduzidos com o conjunto de dados IIa da IV Competição Internacional de Interface Cérebro-Máquina, e, apesar dos resultados superiores em apenas dois sujeitos, não foram observadas melhorias substanciais em relação à abordagem do estado da arte. Ainda assim, a metodologia é promissora e indica potencial para futuras otimizações e desenvolvimentos.