Navegando por Autor "AMARAL, Geovani da Silva do"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Trabalho de Curso - Graduação - Artigo Acesso aberto (Open Access) Análise preditiva e interpretação da classificação de malwares em sistemas android usando aprendizado de máquina(2024-10-15) AMARAL, Geovani da Silva do; MOREIRA, Caio Carvalho; http://lattes.cnpq.br/1370619943470585Este trabalho apresenta uma análise preditiva para a detecção de malwares em dispositivos Android usando Aprendizado de Máquina e métodos de explicabilidade para interpretar os resultados. Apos os pre-processamento, o conjunto de dados foi reduzido para 34.076 amostras e 179 características de chamadas de sistema e permissões. Entre 13 classificadores avaliados, o eXtreme Gradient Boosting (XGBoost) mostrou-se o mais eficiente, com métricas de acurácia, precisão, recall e F1-Score de aproximadamente 94%, e Tempo de Treinamento de 1,48s. O método SHapley Additive exPlanations (SHAP) foi utilizado para explicar as decisões do modelo, o que revelou chamadas de sistema e permissões sensíveis, como READ PHONE STATE, SYSTEM ALERT WINDOW, SEND SMS, ACCESS WIFI STATE, getpriority e getrlimit, fortemente associados a malwares.